SYNTHESIS OF IRON OXIDE NANOPARTICLES FUNCTIONALIZED WITH POLYETHYLENIMINE (PEI) FOR DNA BINDING AND GENE DELIVERY

D.C. Manatunga
Dr. W. R. M de Silva
Dr. C. Chandrasekharan
Prof. K. M. N de Silva
Contents:

- Objectives
- Introduction
- Methodology:
 - Synthesis of iron oxide nanoparticles
 - Functionalization with Polyethyleneimine
 - Binding of DNA to functionalized particles
 - Magnetic transfection of DNA/PEI polyplex in to mammalian cells
- Results and discussion
- Conclusion
Objectives:

Develop a fast and efficient method for delivery of genes to target cells for the purpose of:

- Over expression of introduced genes
- On/off regulation of endogenous genes
- Gene repair
Introduction

• Paramagnetic iron oxide nanoparticles have been widely used in numerous applications like;

 i. MRI (magnetic resonance imaging)
 ii. Tissue repair
 iii. Hyperthermia
 iv. Drug delivery
 v. DNA transfection
• What is transfection?

✓ Transfection is process by which nucleic acids are introduced to eukaryotic cells using non viral vectors

• Why genes are transfected to cells?

✓ Mainly because of the resulting therapeutic benefit for the individual
Types of vectors

Viral

- Gene transduction
 - Retroviruses
 - Adenoviruses etc.

Non viral

- Gene transfection
 - Plasmids
 - Liposomes
• Viral vectors show high gene transfer efficiency, but are deficient in several areas, including the **induction of a host inflammatory and immune response**.

• Some of these problems can be circumvented by employing non-viral vehicles, such as cationic liposomes or polymers.
• However non-viral transfection has a lower efficiency when compared with the viral transfection. That is because cellular uptake mainly depends on,

- Size of DNA
- Charge of DNA
- Stability of DNA
Main modes of non-viral gene delivery

Polyplexes (Polymeric delivery systems)

Lipoplexes (Liposomal delivery systems)
Fig. 1 Entry of DNA/Liposomes into cells
Polyplexes

Fig. 2 Entry of non-viral polyplexes to the cells
• Why use Polyethyleneimine?

✓ PEI protects RNA and DNA from degradation by enzymes.
✓ PEI has ability to complex and condense DNA into stable complexes.
✓ PEI has the highest DNA binding capacity.
✓ PEI easily associate with IONPs.
✓ PEI apparently induces massive proton accumulation in the endosomes followed by passive chloride influx leading to osmotic swelling (Proton sponge effect).
Polyethyleneimine

Fig. 3 Electrostatic interaction between DNA and PEI
History

1. In 2000- AAV (adenovirus) delivered to cells by Cathryn and co-workers (viral)
2. In 2002- Use of PEI coated magnetic nanoparticles for gene delivery by Scherer et al (size was ~200 nm)
3. In 2007- Covalent coupling of PEI to iron oxide composite via glutardialdehyde linker by McBain et al (size was 200-300 nm)
4. In 2008- Petri- Fint et al work on synthesis of PEI coated IONP (involves dialysis for 2 days, too lengthy !!!)
5. In 2009- Wang and his co-workers have synthesized PEI coated IONP in the presence of citric acid (involves lot of neutralization processes and dialysis for 48 hours, also particle size 200-800nm)

But we........

- Synthesized IONP within 25-30 minutes
- PEI coating, just took 30 minutes
- Size was around 3 nm
- Simple and a rapid method
Methodology:

- Co-precipitation was the method which we used during our study.
- Iron oxide nanoparticles were synthesized from aq Fe\(^{2+}\) / Fe\(^{3+}\) (1:2 ratio) salt solutions by the addition of ammonia under N\(_2\) atmosphere in room temperature.

Fig.4 Synthetic set up of magnetic nanoparticles and magnetic attraction
Functionalization with PEI

• Three forms of PEI mainly used.
 i. 22 kDa- linear
 ii. 25kDa- branched
 iii. 50kDa- branched

• During our study we used 25kDa branched polymer.

• Functionalization was carried out in a basic medium using 20%(w/w) PEI solution for 30 minutes at 50 °C
Results and discussion:

- The size of PEI functionalized IONP was characterized using TEM and particle analyzer.
- Particle analyzer gave the size around 3 nm.

Fig.5 TEM image and histogram obtained from particle analyzer
This is because of particle agglomeration, where each iron oxide nanoparticle is associated with more than one strand of PEI and each strand is attached to more than one nanoparticle which causes **bridging aggregation**. This is in accordance with the results reported in the work done by Petri-Fink et al (Petri-Fink A, Steitz B, Finka A, Salaklang J. & Hofmann H. (2008). Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): Colloidal stability, cytotoxicity, and cellular uptake studies. *European Journal of Pharmaceutics and Biopharmaceutics* 68(01):132)
Fig. 6 FT-IR spectrum of 20% (w/w) PEI

Fig. 7 FT-IR spectrum of PEI coated IONP
• TGA curves confirmed that PEI is coated on IONP
• Weight loss of neat IONP = 11.38%
• Weight loss of PEI coated IONP = 54.86%
Application of PEI functionalized IONP for gene delivery

1. DNA binding assessment
2. Magnetofection of HEP2 cells
DNA binding assessment

- PBS vector and PEI coated IONP were incubated at room temperature.

- DNA complexed particles were collected by magnetic separation using a NdFeB magnet.
• DNA bound on PEI coated IONPs was eluted using a buffer containing Tris, NaCl at 60°C

• Gel electrophoresis was carried to confirm the elution of DNA from nanoparticles

Fig.9 Elution done at 60 °C, C- Marker, S₁ - Unbound DNA left in the solution, S₃ - Eluted DNA
Magnetofection

• During the course of our study PEI functionalized IONP were used to deliver the gene encoding for GFP (green fluorescence protein) to HEp2 cells

• pcDNA 3.1 contained the gene coding for GFP
HEp2 cell line

• A cell line derived from epidermal carcinoma of larynx/voice box in humans (organ in neck)
• Kindly donated by Dr. Preethi Soysa of Department of Biochemistry and Molecular Biology of Faculty of Medicine, UOC

Fig. 10 HEp2 cells viewed under a phase contrast microscope
• HEP2 cells were cultured in a MEM (minimum essential medium) medium.

• Prior to transfection 1×10^5 cells/well were seeded at 90% confluency.

• Cells were allowed to take pGFP plasmids for 15-20 minutes under the influence of the magnetic field.

• Medium was replaced after 20 minutes.
Fig. 11 Cell culture preparations

Fig. 12 Magnetic transfection done by keeping the well plate on a magnetic box
After 24 hr incubation the cells were washed with PBS (phosphate buffered saline) and examine the expression of GFP by fluorescence microscopy.

Fig.13 Image capturing using fluorescence microscope
Fig. 14 cells with 90% confluency before transfection

Fig. 15 a.) PEI + DNA, b.) PEI-IONP + DNA, c.) Untransfected cells
Fig. 16 No GFP expression in untransfected cells
Fig. 17 GFP expression in cells transfected by PEI
Fig. 18 GFP expression in cells transfected by PEI coated IONPs
Fig. 19 GFP expression in cells transfected by PEI coated IONPS
Conclusion

- Drastically reduce the amount of PEI needed, since the particle size is very small
- There by toxicity is reduced
- Reduce the incubation time up to 15 minutes (Conventionally 4 hours)
- Simple method
- Easy to prepare
Thank You !!!!!!!