Annelida Polychaeta of Tambalagam Lake, Ceylon

by

T. GOTTFRIED PILLAI

Fisheries Research Station, Colombo, Ceylon

(With twelve text figures)

Although the biology of the Windowpane Oyster (*Placuna placenta*) of Tambalagam Lake has received much attention in the past, very little is known of the other fauna of the lake. The present report deals with the polychaete worms collected during a survey of the oyster beds of the lake in November 1959. The collection contains twenty species, of which thirteen, including a nereid genus, are new to science and four are new to the fauna of Ceylon.

Tambalagam Lake is a brackish-water lake which is subject to tidal movements from the sea and the influx of fresh water from rivers. It is approximately seven square miles in area and situated south-west of Trincomalee Harbour and West of Koddiyar Bay. Both Tambalagam Lake and Trincomalee Harbour open into Koddiyar Bay. The opening of Koddiyar Bay into the sea is about three miles wide. The opening of Tambalagam Lake into the bay is about a quarter of a mile wide. Several rivers flow into the lake and the bay, including the major river, Mahaveli Ganga into the latter. The average, highest and lowest salinities of the lake during the period of the survey were 13.0, 19.0 and 11.0 p.p.t., respectively. The average depth of the lake is one fathom and the greatest depth, which is near the opening into the bay, is four fathoms. The bottom is sandy in the peripheral areas but consists of fine black mud in the greater part of the central area. Near the opening into the bay it consists of coarse sand and shell fragments.

List of species:

- **Nereidae**
  - *Tambalagamia fauveli*, gen. et sp. nov.
  - *Perinereis nuntia* (Sav.) var. *vallata* Grube

- **Glyceridae**
  - *Glycera rouxii* Audouin and M. Edwards

- **Eunicidae**
  - *Eunice savignyi* Grube
  - *Marphysa sanguinea* (Montagu)
  - *Marphysa borradaiici* T. G. Pillai
  - *Diopatra neapolitana* Delle Chiaje
  - *Lumbrineris pseudopolydesma*, sp. nov.
  - *Lumbrineris emandibulata*, sp. nov.

- **Orbiniidae**
  - *Scoloplos (Scoloplos) marsupialis* Southern
  - *Scoloplos (Leodamus) gracilis*, sp. nov.
Spionidae  Laonice brevicristata, sp. nov.
Opheliidae  Anmotrypane grandis, sp. nov.
Capitellidae  Heteromastides platyproctus, sp. nov.
            Notomastus ceylonicus, sp. nov.
            Heteromastus deductus, sp. nov.
Maldanidae  Axiothella tambalagamensis, sp. nov.
Terebellidae  Loimia decorata, sp. nov.
Sabellidae  Potamilla brevithoracica, sp. nov.
Serpulidae  Hydroides tambalagamensis, sp. nov.

Perinereis nuntia var. vallata, Glycera rouxii, Marphysa sanguinea and Scoloplos marsupialis are new records from Ceylon.

The type specimens of the species new to science have been deposited in the British Museum (Natural History).

Family  NEREIDAE  Johnston 1865
Genus  TAMBALAGAMIA  gen. nov.

Dorsal cirri of the anterior region and ventral cirri throughout the body double. Prostomium indented in front, palps and tentacles tapering, two pairs of eyes. Branchiae present, each as a simple vascular modification of the region below the dorsal cirrus and with or without a ventral fin. Dorsal body wall of each branchiferous segment produced into a vascular flap. Setae all homogomph spinigers.

Dendronereis Peters (1854) and Dendronereides Southern (1921) are similar to the present genus in the following respects: Branchiae are present, each as a modification of the region below the dorsal cirrus. The proboscis lacks hard paragnaths. It bears the usual pair of hard jaws and either lacks any other armature or is armed with only soft papillae. Setae are all homogomph. Some of them are spinigers with long serrations along one side of their terminal portions. These genera are also typically brackish water forms. These similarities at once suggest a close natural relationship among them and the suitability of grouping them together under a separate sub-family. The name Dendronereinae, taking Dendronereis Peters as the type, is proposed for this new sub-family.

The three branchiferous nereid genera differ amongst themselves in important respects. Both Dendronereis and Dendronereides possess normal dorsal and ventral cirri. The double nature of the dorsal and ventral cirri in Tambalagamia, gen. nov., is an aberrant character. In Dendronereis each gill consists essentially of a pinnately branched modification of the region below the dorsal cirrus, the latter remaining unchanged at the tip of the gill. In Dendronereides too, as pointed out by Southern (1921), each gill is a modification of the
region below the dorsal cirrus, but consists essentially of a bunch of filaments between the dorsal cirrus and the dorsal ligule. The ventral ligule of the foot is present in *Tambalagamia* and *Dendronereis* but absent in *Dendronereides*. Homogomph falcates are present together with homogomph spinigers in *Dendronereides*, while only homogomph spinigers are present in the other two genera. Furthermore, in *Dendronereides* there is a peculiar gland opening to the exterior at the base of each dorsal cirrus, except a few anterior ones. Such glands are absent in the other two genera.

Southern (1921) could not see blood vessels in the gills of *Dendronereides* and considered this an important character to differentiate it from *Dendronereis*. Fauvel (1932), however, observed blood vessels in some of the gill filaments of *Dendronereides* and stated that Southern had not seen them probably because the empty blood vessels were not noticeable in the contracted gills. Fauvel’s (1932, p. 86) generic definition of *Dendronereides* includes “Setae of two kinds, falcate homogomphs and spinose heterogomphs”. His description of *D. heteropoda* (1932, p. 87), however, includes “Homogomph spinigerous setae and homogomph falcate setae with smooth terminal piece,” which is the condition obtaining in the genus.

A few non-branchiferous nereid genera, namely, *Tyloneiris* Fauvel, *Ceratocephala* Malmgren, *Tylorhynchus* Grube, *Lycastis* Savigny and *Micronereis* Claparede are similar to the present genus in some respects. Southern (1921) stated that *Dendronereides* shows rather distant affinities with *Tyloneiris*, *Ceratocephala* and *Tylorhynchus*. *Tyloneiris* possesses only homogomph (spinigerous) setae and only soft papillae on the proboscis, but differs from the *Dendronereinae* in lacking gills and possessing foliaceous dorsal ligules. *T. bogaulenskyl* Fauvel and *T. fauveli* Southern have been recorded from both brackish water and the sea. *Ceratocephala* and *Tylorhynchus* bear only soft papillae on the proboscis but their setae are different from those of the *Dendronereinae*. *Lycastis* lacks both hard and soft paragnaths on the proboscis, but possesses heterogomph setae. As listed by Southern (1921, p. 581), two species of *Lycastis* have been recorded from the sea, two from the sea and brackish water, two from brackish water alone, and two from fresh water. *Micronereis* possesses neither hard nor soft paragnaths and its setae are all homogomph (spinigers) but, unlike in the *Dendronereinae*, its buccal segment bears parapodia and setae.

*Tambalagamia fauveli*, gen. et sp. nov.  
(Fig. 1, A—G; Fig. 2, A—F)

This species is taken as the type for the genus.

Sixteen specimens were collected, fifteen of them with their posterior ends damaged or missing and one with its anterior end missing. The largest of the former is 54.0mm long and possesses 105 setigerous segments while the latter is 55.0mm long and possesses 110 setigerous segments. The maximum width of all the specimens is about 2.0mm in the pre-branchial and branchial regions. The body narrows to about 1.0mm posteriorly.
TEXT-FIGURE 1.—Tambalagamia fauveli, gen. et sp. nov., A—G. A, Dorsal view of anterior portion of worm; B, Ventral view of proboscis; C, Dorsal view of prostomium and proboscis; D, Dorsal view of 66th—75th setigerous segments; E, Anterior view of first left foot; F, Homogomph spiniger from first foot; G, Homogomph spiniger with long serrations along one edge, from the first foot.
The prostomium (Fig. 1, A & C) is deeply indented anteriorly and bears two pairs of eyes. The palps are two jointed, the distal joint tapering. The pair of tapering tentacles is situated dorsal to the palps. The longest tentacular cirrus, when bent backwards, reaches the sixth setigerous segment.

The proboscis (Fig. 1, B & C) possesses a pair of maxillae and only soft hooks. The maxillae are light brown in colour and transparent. The maxillary ring is devoid of any other armature. The oral ring has a dorsal row of 5 soft hooks, the 3 more medially situated hooks being somewhat closer together than the hooks on either side of them. The ring is completed ventrally by a row of 7 similar hooks which are approximately equidistant from one another.

The peristomium or buccal segment is slightly longer than the succeeding segment. The first dozen setigerous segments or so are profusely provided with golden brown setae (Fig. 1, A). They are less profuse in the succeeding segments.

The first foot (Fig. 1, E) has a double dorsal cirrus arising from a common stem which is sharply demarcated from the median lobe. The lower ramus of the dorsal cirrus is about half as long as the dorsal ramus. The dorsal ligule and dorsal setae are absent. The median ligule has a short, tapering post-setal lobe. The ventral ligule is cirriform. The double ventral cirrus is somewhat isolated from the parapodial lobe. The two rami of the ventral cirrus are subequal. A single aciculum is present in the median lobe. Two kinds of setae are present. Most of them are homogomph spinigers with tapering, minutely serrated blades (Fig. 1, F). Two homogomph spinigers with plumose serrations along one side of the blade (Fig. 1, G) are present near the aciculum. Setae of the fifth foot are similar, but there are three setae of the latter kind.

In the tenth foot (Fig. 2, A) the two dorsal cirri and a cirriform dorsal ligule, all three arising from a common stem, are sharply demarcated from the median lobe. The median lobe has an anterior cirriform process and a posterior rounded flap. The cirriform ventral ligule and the median lobe arise from a common stem which is equal in length to that of the dorsal ramus of the foot. The two ventral cirri are equal in size. In addition to the aciculum and setae in the median ligule, a bundle of setae and an aciculum are present in the dorsal ramus of the foot. Setae of both rami of the foot are similar to those of the first foot, except that there are about ten setae with plumose serrations in the ventral ramus and none in the dorsal.

In the fourteenth foot (Fig. 2, B) the two dorsal cirri, on a common stem, are separated from the dorsal ligule and setae of the dorsal ramus. The common stem of the dorsal cirri and dorsal ligule is in turn more sharply demarcated from the median ligule. Of the two ventral cirri the lower one is shorter. Setae of this foot, and of succeeding feet are similar to those of the anterior feet, except that there is only one seta with a plumosely serrated blade.

The common stem of the two dorsal cirri of the fifteenth foot (Fig. 2, C) is elongated, swollen, vascular and functions as a gill. There is a single channel for the circulation of
TEXT-Figure 2.—Tambalagamia fanveli, gen. et sp. nov., A–F. A, Anterior view of 10th left foot; B, Anterior view of 14th left foot; C, Anterior view of 15th left foot; D, Anterior view of 16th left foot; E, Anterior view of 40th left foot; F, Anterior view of 70th left foot. Perinereis mutia (Sav.) var. vallata Grube, G–H. G, Dorsal view of prostomium and proboscis; H, Left lateral view of proboscis.
blood. The clotted blood is visible through the gill wall. The two dorsal cirri are situated at the tip of the gill. This is the beginning of the branchial region. The common stem of the gill and the dorsal ligule is shorter than in the fourteenth foot. The ventral cirri are shorter and subequal.

From the 16th foot (Fig. 2, D) backwards the ventral ramus of the dorsal cirrus is absent and the demarcation between the dorsal and ventral rami of the foot is less pronounced. The gills of the 16th foot, and of the few succeeding feet are similar to that of the 15th foot in being somewhat cylindrical and possessing a single channel for the circulation of blood. From about the 28th-33rd feet till the 60th-80th feet the gills are flattened. They are provided with a thin, membraneous ventral fin and a double channel for the circulation of blood (Fig. 2, E). The dorsal body wall of each segment in the gill region is thrown into a triangular, vascular flap which overlaps the succeeding segment (Fig. 1, A). The branchial region ceases by about the 60th-80th feet but a few succeeding dorsal cirri are provided with a vascular supply within their bases. A single dorsal cirrus is present in each branchial and post branchial foot. The dorsal cirri of the post branchial segments have a characteristic upward and outward curvature and faint rounded swellings in the positions originally occupied by the ventral rami (Fig. 2, F). In all the specimens in the collection gills commence on the 15th foot and the ventral ramus of the dorsal cirrus is absent from the 15th or 16th foot.

The anal aperture is situated posteriorly at the centre of the anal segment. No anal cirri are present, but it cannot be said with certainty whether this is the natural condition or whether they had dropped off.

The worms live in the fine black mud which collects between the halves of dead window-pane oyster shells or between adjoining shells. When one half of a mud filled shell is removed, ramifying burrows are seen in a plane parallel to the shell and, usually, a single worm is present within the system of burrows. The burrows do not possess any special lining but are yellowish brown in colour and open to the outside on the outer margin of the mass of mud between the shells. Examination of the live worms with a powerful hand lens showed three bright red longitudinal bands corresponding to the row of median vascular flaps and the gills on either side of it. The gills were in constant motion from before backwards. The fin-like expansions of the gills undoubtedly serve the purpose of effectively wafting water through the burrows and over the body of the worm for respiration.


Genus **PERINEREIS** Kinberg, 1866

**Perinereis nuntia** (Savigny) var. **vallata** Grube

(Fig. 2, G-H; Fig. 3, A-H)

**Perinereis nuntia** (Savigny) var. **vallata** Grube, Fauvel 1932, p. 110.
**Perinereis nuntia** (Savigny) var. **vallata** Grube, Aziz 1938, p. 28.
TEXT-FIGURE 3.—Perinereis mutia (Sav.) var. vallata Grube, A—H. A, Anterior view of first left foot; B, Anterior view of third left foot; C, Anterior view of 10th left foot; D, Anterior view of 25th left foot; E & F, Homogomph spinigers; G, Heterogomph falciger; H, Anal segment. Glycera rouxii Audouin and Milne Edwards, J—S. J, Dorsal view of anterior end, with everted proboscis; K, A jaw from the proboscis; L, Posterior view of 10th left foot; M, Posterior view of an extreme posterior left foot; N, Anterior view of an extreme posterior left foot; O, Dorsal seta; P, Ventral seta; Q—S, Variations of the articular joints of the ventral setae.
Five specimens were dug up from the sand at the low-tide mark at Kappalturai and Kodimaraththadi. The largest specimen is 80.0mm long, 3.25mm wide and possesses 122 setigerous segments, the last three or so being smaller and newly formed.

The prostomium is shaped like a broad inverted T and the two tentacles arise from its anterior end (Fig. 2, G). The proboscis (Fig. 2, G & H) has a pair of black maxillae and paragnaths arranged as follows: group I, 1-3 small conical paragnaths; group II clusters; group III, a large irregular cluster, sometimes with an isolated paragnath on either side of it; group IV, a somewhat crescentic cluster with roughly three rows of paragnaths; group V, a single paragnath situated behind the level of group VI; group VI, a transverse row of conical or usually flattened paragnaths, some of the more median ones being double; group VII-VIII, three alternate rows of somewhat flattened paragnaths.

The first and second feet are similar in regard to their shape and setae (Fig. 3, A). The dorsal parapodial ramus possesses a single, blunt, dorsal lobe but lacks acicula and setae. The ventral ramus bears an aciculum and homogomph spinigers (Fig. 3, F). A few setae are somewhat heterogomph (Fig. 3, B). In the 3rd foot (Fig. 3, B) the dorsal ramus possesses two rounded lobes and an aciculum, and fine capillary setae run to a point between their bases. The ventral cirri increase in size up to the 5th or 6th foot after which they decrease in size. In the 10th foot (Fig. 3, C) the two lobes of the dorsal ramus are subequal. The 10th and succeeding feet show no differences, except for the somewhat more pointed condition of the two lobes of the dorsal ramus (Fig. 3, D). In all the feet, there are heterogomph falcigers (Fig. 3, G) in the ventral ramus, in addition to the homogomph spinigers. The anal segment is rounded and bears two long filamentous cirri (Fig. 3, H).

Distribution. Red Sea, Cape of Good Hope, Madagascar, India (Krusadi Island, Chau-patti, Bombay), Karachi, Ceylon, Philippines, Australia, New Zealand.

Family GLYCERIDAE Grube, 1850

Genus GLYCERA Savigny, 1818

Glycera rouxii Audouin and M. Edwards (Fig. 3, J–S)

Glycera rouxii, Quatrefages 1865, p. 176.
Glycera rouxii, Fauvel 1923, p. 389.
Glycera rouxii, Fauvel 1932, p. 128.
Glycera rouxii, Treadwell 1936, p. 275.

Six specimens were collected with a bottom grab from the muddy central part of the lake. The largest specimen is 83.5mm long, 2.25mm broad and possesses 138 setigerous segments.
The prostomium is acutely conical, consisting of about 7 rings and bears four minute tentacles at its tip (Fig. 3, J). The papillae of the proboscis are conical, globular or lanceolate and are devoid of terminal nail-like tips. Each jaw has a somewhat curved support, one side of which is produced into a long process (Fig. 3, K). In the anterior feet (Fig. 3, L) there are two long, equal, leaf-like anterior lobes with pointed tips, and two small subequal posterior lobes of which the dorsal one is slightly larger. The ventral cirrus is leaf-like. In the posterior feet (Fig. 3, M & N) the ventral cirri and the anterior lobes show no change but the dorsal posterior lobe is larger and more pointed than the other. The dorsal cirri on all the feet are small, knob-like and somewhat isolated from their respective feet. Gills commence on about the 10th-15th feet as a small knob on the antero-dorsal part of each foot. They are longer, unbranched and cirriform posteriorly and can be retracted into the anterior part of the feet. Dorsal setae are simple with flattened, minutely serrated blades (Fig. 3, O). Ventral setae are compound and with finely serrated blades (Fig. 3, P). The articular joints are mostly homogomph, but variations are found in the same worm, often in the same foot (Fig. 3, Q, R & S). The ventral cirri are foliaceous in two specimens but narrower and more pointed in the others. The feet are shorter and broader in the former but longer and narrower in the latter.

Fauvel (1932) states that G. goesi Malmgren is G. rouxii with all the gills retracted into the feet.

*Distribution.* Atlantic Ocean, Mediterranean Sea, Persian Gulf, India, Ceylon, Andaman Islands, Japan, California.

**Family EUNICIDAE** Savigny, 1818

**Genus EUNICE** Cuvier, 1817

**Eunice savignyi** Grube

*(Fig. 4, A—K)*


30 specimens were collected with the bottom grab from all parts of the lake. The largest specimen is 60.5mm long, 2.0mm broad and possesses 110 setigerous segments. The pigmentation in alcohol is as follows: Dorsally, there is a reddish brown patch on the anterior border of the peristomium. The succeeding achaetous segment and the 20-25 setigerous segments possess two narrow brownish pigment bands, one along the anterior end and the other along the posterior end of each segment. The body is unpigmented ventrally. On the posterior dorso-lateral aspect of the last 25 segments or so there is, on either side, a small reddish-brown pigment spot.

The prostomium is bilobed, the two halves being separated only by a shallow anterior groove which does not extend over the dorsal part of the prostomium (Fig. 4, A). The tentacles are articulate. The median tentacle reaches the 5th or 6th setigerous segment.
TEXT-FIGURE 4.—*Eunice savignyi* Grube. A—K. A, Dorsal view of anterior end; B, Anterior view of first left foot; C, Anterior view of 3rd left foot; D, Anterior view of 20th left foot; E, Anterior view of 30th left foot; F, Compound ventral setae from the first foot; G, Bidentate acicular hook from the 65th foot; H, Comb setae from the 30th foot; J, Dental apparatus (dorsal view); K, Dorsal view of anal segment. *Marphysa sanguinea* (Mont.), L—N. L, Dorsal view of anterior end; M, Anterior view of first left foot; N, Anterior view of 153rd left foot.
when bent backwards. A large conspicuous eye is present on either side between the bases of the intermediate and lateral tentacles. The peristomium is about two and a half times as long as the succeeding achaetous segment. The tentacles and tentacular cirri are smooth in some specimens but faintly wrinkled in others.

The first foot (Fig. 4, B) has a single setigerous lobe and the dorsal cirrus is about two and a half times as long as the ventral cirrus. Gills commence as a single or double filament on the third foot (Fig. 4, C) from the base of the dorsal cirrus. They attain a maximum number of 7-8 filaments by the 20th foot (Fig. 4, D), and cease abruptly by the 30th foot (Fig. 4, E). A bundle of fine capillary setae runs to the base of the dorsal cirrus in all the feet but do not protrude to the exterior. The feet also possess capillary setae and compound setae with long serrated guards and bidentate tips (Fig. 4, F). Bidentate hooded hooks (Fig. 4, G) commence in the region of the 24th or 25th foot. Comb setae (Fig. 4, H) can be observed with some difficulty in the region of the 30th foot.

In the dental apparatus (Fig. 4, J) the maxillary and mandibular groups consist of the usual parts, but while the former is dark in colour the latter is colourless and can be distinguished from the buccal lining with some difficulty. In the left great maxilla three of its anterior teeth are separated from the fourth tooth. These four teeth are also larger than those which follow.

The anal aperture is situated postero-dorsally on the rounded anal segment which bears two short ventral cirri and two long posterior cirri (Fig. 4, K).

In all the specimens in the collection gills commence on the 3rd foot, attain a maximum number of 7-8 filaments and cease by the 30th foot. Fauvel (1932) states that they may commence on the 3rd or 4th foot, attain a maximum number of 8-15 filaments and cease by the 30th-40th feet.


Genus MARPHYSA Quatrefages, 1865

Marphysa sanguinea (Montagu)  
(Fig. 4, L—N ; Fig. 5, A—E)

Marphysa sanguinea, McIntosh 1910, p. 443.  
Marphysa sanguinea, Fauvel 1923, p. 408.  
Marphysa sanguinea, Fauvel 1930, p. 28.  
Marphysa sanguinea, Fauvel 1932, p. 141.  
Marphysa sanguinea, Aziz 1938, p. 37.  
Marphysa sanguinea, Abbot 1946, p. 6.

One specimen was collected from Nachchikuda, where the bottom is mostly sandy. Length of worm 212.0mm, width 5.0mm in the region of the 15th foot. Total number of setigerous segments 392, the last 15 or so being small and newly formed.
The prostomium is bilobed and the tentacles are short but longer than the head (Fig. 4, L). A pair of eyes is present and can be seen with difficulty between the bases of the lateral and intermediate tentacles. In the first foot (Fig. 4, M) the dorsal cirrus is about twice as long as the ventral cirrus. Gills commence as a single filament on the 30th left foot and as a double filament on the 34th right foot. They attain a maximum number of 6-7 filaments in the 135th-295th feet and decrease progressively in the succeeding segments. Gills are present almost to the end of the worm. The ventral setae are compound, with somewhat curved tapering blades (Fig. 5, A). The dorsal setae are simple, with flattened tapering blades (Fig. 5, B). There are 2 aciculae in the first foot, 4 in the 26th, 3 till about the 90th and generally 2 in the succeeding feet. Bidentate, hooded hooks (Fig. 5, C) commence on the 47th left foot and the 45th right foot. There is usually one hook in each foot, but occasionally there are two. Comb setae of the anterior segments possess numerous slender teeth and a long curved process on either side (Fig. 5, D). Posterior comb setae have fewer and larger teeth (Fig. 5, E). The tooth counts of the dental apparatus are as follows: maxillae II, 4 on the left and 5 on the right; maxilla III or azygous plate 6; maxillae IV, 4 on the left and 8 on the right.

**Distribution.** West Indies, Atlantic Ocean, Mediterranean Sea, Red Sea, Indian Ocean, India, Ceylon, Australia, New Caledonia, China Sea, Japan, Melanesia, Hawaii.

*Marphysa borradailei* T. G. Pillai

*Marphysa borradailei,* Pillai 1958, pp. 94-106.

Three specimens were collected from the muddy low-tide mark at Nachchikuda. Numerous cocoons of this worm were also seen here.

This species can be distinguished from *Marphysa gravelyi* Southern chiefly by its maximum number of gill filaments (up to 18-20) and general appearance and tooth counts of the dental apparatus. The cocoons of the worm are usually present wherever it occurs and examination of the metatrochophore larvae from a few cocoons serves as a check.

The lectotype of this species has been deposited in the Annelida Section of the British Museum (Natural History); Reg. No. 1960. 3. 13. 6.

**Genus Diopatra** Audouin and Milne-Edwards, 1833

*Diopatra neapolitana* Delle Chiaje

(Fig. 5, F—M)

*Diopatra anuboinensis,* Willey 1905, p. 274.
*Diopatra variabilis,* Southern 1921, p. 611.
*Diopatra neapolitana,* Fauvel 1923, p. 419.
*Diopatra neapolitana,* Fauvel 1932, p. 143.
*Diopatra neapolitana,* Aziz 1938, p. 39.
TEXT-Figure 5.—*Marphysa sanguinea* (Mont.), A—E. A, Ventral compound seta from the 47th foot; B, Simple, flattened dorsal seta; C, Ventral hook from the 360th foot; D, Comb seta from the 300th foot; E, Comb seta from the 360th foot. *Diopatra neapolitana* Delle Chiace, F—M. F, Dorsal view of anterior end; G, Dorsal seta from the first foot; H, Ventral, pseudocompound seta from the first foot; J, Comb seta from the 5th foot; K, Tip of an aciculum; L, Ventral seta from the 50th foot; M, Ventral hook from the 50th foot.
Fifteen small specimens, some with their tubes, 7 anterior fragments of very large specimens and several large tubes were collected from all parts of the lake. Of the smaller group, the smallest specimen is 43.0mm long, 2.0mm wide and possesses 142 segments and the largest is 60.0mm long, 2.25mm wide and possesses 156 segments. Of the larger group, the longest anterior fragment is 265.0mm long and 8.5mm wide in the region of the 15th-20th setigerous segments. The largest tube in the collection is 550mm long, about 160mm of which was exposed above the bottom. The tip of the exposed portion is 18mm in diameter and the posterior end is 8.0mm wide.

The two groups of specimens are differently pigmented. A common feature, however, is that the pigmentation of the first ten segments or so, together with the gills from the fourth setiger, is very much lighter than that of the succeeding segments.

The pigmentation of the smaller specimens is as follows: The dorsal aspect of each of the first ten segments or so possesses two, narrow, transverse, brown bands, one along the anterior border and the other along the posterior border of the segment. On the next fifteen segments the light brown pigment is diffused after which it gradually becomes lighter and disappears. The annulations of the ceratophores are brown. In some specimens there is a pigment spot on each side, between the bases of the median and intermediate ceratophores.

The larger specimens are iridescent purplish-green when freshly preserved but iridescent brown after long preservation. In some, as in the smaller specimens, there is a dark spot on either side of the median ceratophore on the prostomium. The tentacles are sparsely mottled with minute brown specks. Unlike in the smaller specimens, the first ten setigers or so have lightly diffused dark brown pigment dorsally. The colour becomes darker from the eleventh to about the fortieth setiger after which it gradually becomes lighter. In three specimens the region from the eleventh to about the fortieth segments is apparently uniformly pigmented but in reality the pigment is restricted to minute rhomboidal areas which correspond to the tesselations of the cuticle. In one specimen, the dorsal junctions between the first few feet and their corresponding segments, and the ventral parts of the same segments, possess conspicuous brownish-black patches.

The five prostomial tentacles are borne on ringed ceratophores. The median and intermediate tentacles are subequal, the latter being the shorter, and the lateral tentacles are about half as long as the intermediate ones (Fig. 5, F). The number of annulations in the median ceratophore of the smaller specimens is from 8-12 and in the larger ones 11-12. In the dental apparatus, the tooth counts agree with those of *D. variabilis* (Southern, 1921), but the azygous plate is on the right side in some small specimens and in one large specimen. The maxillary carriers are cordate. Each mandible has a flattened, calcareous, anterior expansion and a somewhat straight, sub-cylindrical shaft which ends in a blunt point.

An important difference between the smaller and larger specimens lies in the anterior feet. In the smaller specimens the first four feet possess normal dorsal and ventral cirri, a median ligule and a shorter ventral ligule (both ligules appearing like two post-setal lobes). The ventral ligule is not easily seen in dorsal view as it is situated antero-ventral to the median
ligule, but it is easily noticeable in lateral view. In the 5th foot the ventral ligule is reduced to a small knob. It is absent from the 6th posteriorly. The ventral cirrus is normal in the fifth foot too but is modified into a small knob in the 6th foot and, a flattened pad in each succeeding foot. In contrast, the larger specimens lack a ventral ligule in all the feet, there being apparently a single post-setal lobe, but the modifications of the ventral cirri are identical. The differences in the structure of the anterior feet between the smaller and larger specimens are possibly due to age and size.

Gills begin on the fourth foot in all the specimens in the collection (4th or 5th, Fauvel, 1932). They cease on the 30th-50th foot in the smaller specimens and on the 90th-100th foot in the larger ones. Each gill is a branch from the base of the dorsal cirrus with the filaments arranged spirally on it. The most posterior gills are merely a few filaments from the bases of the dorsal cirri. The number of gills, their lengths and the number of filaments apparently depend on the age and size of the worm. The method of fixation has some effect on the lengths of the gills, including the filaments, and the amount of crowding of the filaments on the central axis.

In the first few feet the main setigerous lobe has a dorsal bundle of ventrally curved, flattened setae (Fig. 5, G) and a ventral bundle of pseudocompound setae with bidentate, hooded tips (Fig. 5, H). The acicula possess slender, geniculate tips (Fig. 5, K). After about the fifth foot the ventral pseudocompound setae are replaced by flattened winged setae with very minute serrations at their bases (Fig. 5, L). Simple, bidentate, hooded hooks (Fig. 5, M) are present from about the 14th-17th foot in the smaller specimens and the 28th-42nd foot in the larger ones. There are some differences between the comb setae of the smaller and larger specimens and between those of the anterior and posterior feet of the same specimen. Generally, in the smaller specimens and in the anterior feet of the larger specimens, the comb-like tips are flat or only slightly curved, whereas in the posterior feet of the larger specimens the tips are more curved, almost into a three-quarter circle. Often, comb setae varying between both these extremes of curvature of their tips are found in the same foot. In both groups of specimens, there are less teeth in the comb setae of a few anterior feet than in those of the succeeding feet. The number of teeth in the comb setae of the posterior feet varies from about 13-25. In a comb seta from the fifth foot of a large specimen there are ten teeth (Fig. 5, J).

The anus is dorsal and the anal segment bears four short cirri, the ventral pair being the shorter.

The tube is thin and membraneous in the smaller specimens and thick and parchment-like in the larger ones. Most of it is buried in the bottom and the exposed portion is more or less covered with mud, sand, shell fragments, algal fragments and debris.

*Diopatra neapolitana* Delle Chiaje is apparently a very variable species. The several records and descriptions of the species suggest that there may be several races, many of them geographically located, which probably accounts for some of the variations that have been reported. Some of the variations are apparently due to age and size.
In general, the pigmentation of the specimens in the present collection agrees with that of *D. variabilis* (Southern 1921), *D. amboinensis* Aud. and M-Edwards of Willey (1905) and *D. cuprea* (Bosc.). Both *D. variabilis* and *D. amboinensis* were regarded as synonyms of *D. neapolitana* by Fauvel (1932).

It is with some hesitation, in the present state of our knowledge, that the two groups of specimens in the present collection are assigned to *D. neapolitana*, in spite of the differences in the structure of the anterior feet, commencement of ventral hooks and the pigmentation. The anterior feet of *D. amboinensis* of Willey (1905) agree with those of the smaller specimens in the present collection. Willey’s description includes a figure of the first foot (Pl. IV, fig. 96). With regard to the feet he stated the following: “The anterior appendages possess other characteristic features besides the setae which they carry. The lips of the orifice of the pharetra setarum are triangular, an anterior short truncate border followed by a long stout cirriform posterior median lobe and a smaller ventral ligule; I do not know of any other species of *Diopatra* in which this third ligule has been described. Sometimes it is appressed against the median lobe and so concealed from view on the slide, but it can be found with a simple lens on the body of the worm.” Judging by the description and size of Willey’s single specimen it is identical with Southern’s small specimens of *D. variabilis* and the small specimens in the present collection. Southern (1921, p. 616) states the following: “The smaller specimens, however, closely resemble certain species already described such as *D. chiliensis*, Quart (Ehlers 1901, p. 123) and *D. leucharti* Kinberg (1910, p. 38). The structure of the dorsal capillary setae which apparently differentiates the present species, may have been overlooked by previous workers.” With regard to the two groups of specimens in his collection he stated: “If the specimens had come from different localities they would probably have been regarded as distinct species. It seems very probable, however, that the distinctions observed are due to differences in size and age. . . . The question of whether one or two species are involved can only be decided by a more ample supply of material, collected at different seasons of the year. . . . These variations show that many of the criteria which have hitherto been used to discriminate the various species of the genus are of little or no value. Crossland (1903, p. 132) has already commented on this point.”

In Southern’s specimens a comb seta from the fourth foot had about 13 coarse teeth and two external slender teeth, the latter differing very little from the other teeth. This number falls within the range of teeth in comb setae of worms in the present collection. Fauvel (1932, p. 145) stated: “In Indian specimens there are comb setae often longer and with teeth finer and more numerous, but I have also found such setae on specimens from the Atlantic and sometimes both types of comb-setae may be observed together in the same foot. If such a slight difference were taken into account, this would at best characterize a variety and not a species. The very variable *D. variabilis* does not appear to be a distinct species.”

**Distribution.** This species has a very wide distribution. It has been reported from the Atlantic Ocean, Mediterranean Sea, Indian and Pacific Oceans, Coast of France, East Africa, Ceylon, Chilka Lake, Krusadi Island, Persian Gulf, Burma, Mergui Archipelago, Tuticorin Harbour, Gulf of Siam, Karachi, Japan, Gold Coast.
Genus **LUMBRINERIS** Blainville, 1828

*Lumbrineris pseudopolydesma*, sp. nov.

(Fig. 6, A—H)

Two specimens were collected from the centre of the lake, one complete and the other with a few posterior segments missing. The former is 132.0mm long, 3.0mm broad at the level of the 18th foot and possesses 256 setigerous segments. The second specimen is 133.0mm long, 3.0mm wide and possesses 256 segments. The cuticle is iridescent and the anterior part of the body is reddish brown dorsally.

The prostomium is bluntly conical and lacks eyes and tentacles (Fig. 6, A & B). A pair of oral pads is present ventrally. The peristomium is about twice as long as the succeeding achaetous segment. The ventral lip of the mouth is furrowed. The intersegmental groove between the peristomium and succeeding achaetous segment is not complete ventromedially owing to the extension of the ventral swelling of the former to the end of the latter segment. In the dental apparatus (Fig. 6, C) the pair of forceps or maxillae I are about twice as long as their tapering carriers. Lateral to the forceps are a pair of long, narrow, chitinous strips with finely spotted anterior expansions. Maxillae II have four teeth on both sides and their antero-lateral ends are curved upwards. Maxillae III consist of a pair of dorso-ventrally curved plates with a pair of outwardly directed teeth at their dorsal ends. Maxillae IV consist of a pair of dorso-ventrally curved plates each with a single outwardly directed postero-dorsal tooth. Lateral to Maxillae IV are a pair of finely spotted plates. The lower jaw has transverse markings anteriorly. The first foot is short but has a long posterior lobe (Fig. 6, D). The posterior feet are longer, the triangular posterior lobe being about half as long as the foot itself (Fig. 6, E). Two acicula with dark brown tips are present in each foot. Anterior feet have curved, tapering, bladed setae (Fig. 6, F). From about the 50th foot there are also simple, hooded, ventral hooks with several minute tubercles above the main fang (Fig. 6, G). The presence of hooks is irregular and there are several feet without them. Setae are missing in most of the feet behind the 20th foot in the second specimen. The anal aperture is dorsal and the anal segment has four short, equal cirri (Fig. 6, H).

*Lumbrineris polydesma* Southern, which shows the closest resemblance to the present species, differs in the following respects. The intersegmental groove between the peristomium and succeeding achaetous segment is incomplete ventrally owing to the anterior extension of the swelling of the latter. The crochets or ventral hooks possess 6-10 long slender spines above the main fang. In maxilla I the forceps is as long as its carrier. The tooth counts of Maxillae II are also different. *L. heteropoda* Marenzeller differs from the present form in possessing a rudimentary dorsal lobe in the middle and posterior feet. *L. impatiens* Claparède possesses crochets in the anterior feet.


TEXT-FIGURE 6.—*Lumbrineris pseudopolydesma*, sp. nov. A—H. A, Dorsal view of anterior end; B, Ventral view of anterior end; C, Dental apparatus (dorsal view); D, Anterior view of first left foot; E, Anterior view of a foot from the middle of the body; F, Seta from the 54th foot; G, Ventral hook from the 54th foot; H, Dorsal view of anal segment. *Lumbrineris emandibulata*, sp. nov. J—M. J, Dorsal view of anterior end; K, Ventral view of anterior end; L, Dental apparatus (dorsal view); M, Anterior view of 10th left foot; N, Ventral seta with flattened blade from first foot.
Lumbrineris emandibulata, sp. nov.
(Fig. 6, J—M; Fig. 7, A—F)

Two specimens were collected from the centre of the lake, both with their posterior ends missing. The longer one is 55.0 mm long and possesses 225 setigerous segments. Both specimens are 0.8 mm wide. The anterior segments are reddish brown dorsally but unpigmented ventrally.

The anterior segments are cylindrical and the posterior ones moniliform. The prostomial is conical and lacks eyes and tentacles (Fig. 6, J & K). A pair of oral pads is present ventrally. The peristomium is about twice as long as the succeeding achaetous segment. The ventral lip of the mouth is swollen but not furrowed. The ventral swelling of the peristomium extends nearly to the end of the next segment. In the dental apparatus (Fig. 6, L) the lower jaws or mandibles are absent. In Maxillae I, the forceps is nearly equal to its carrier. In Maxillae II there are 4 triangular teeth on either side. Maxillae III are a pair of rectangular plates, each with a pair of blunt teeth. Maxillae IV are a pair of broad dorso-ventrally curved plates devoid of teeth.

Parapodia possess rounded, dorsally directed posterior lobes (Fig. 6, M). Three kinds of setae are present in the first foot. In the ventral part of the foot there is a single flattened seta with a narrow wing on either side of it (Fig. 6, N). A bundle of simple setae with somewhat swollen and tapering blades (Fig. 7, A & B) is present dorsally. In the middle of the foot there are a few simple setae with apparently rounded tips (Fig. 7, C & D). Close examination of the latter setae show that their truncated distal ends possess short pointed tips, foreshadowing the hooks of the succeeding feet. In the 10th foot (Fig. 6, M) there are 4 setae in the dorsal group, 3 hooks with long guards in the middle and one flattened seta ventrally. The setae of the middle group became progressively more hook-like in the succeeding feet, the final form being arrived at by about the 20th foot. A hook from the 20th foot has a long guard and 5 well defined teeth over the blunt main fang (Fig. 7, E.) By the 26th foot the flattened ventral seta is absent and there are only two tapering blades in the dorsal group. However, there appears a hook, of the typical form, above the dorsal bladed setae. The hooks of the dorsal and middle group possess similar tips but the guard of the dorsal one is the longest. From about the 40th foot only hooks are present, usually about 3 to each foot. Posterior hooks possess short guards (Fig. 7, F).

The lack of mandibles in the dental apparatus and the nature of the setae may be taken as characteristic of the species, for the present.


Family ORBINIIDAE Hartman, 1942

Sub-family ORBINIINAE Hartman, 1957

Genus SCOLOPLOS Blainville, 1828 (sensu stricto)
TEXT-FIGURE 7.—Lumbrineris emaniibulata, sp. nov. A—F. A, Dorsal seta from the first foot; B, Same seta in side view; C, Seta from the middle group of the first foot; D, Same seta in side view; E, Hook, with long guard, from the 20th foot; F, Hook, with short guard, from the 26th foot. Scoloplos (Scoloplos) marsupialis Southern, G—L. G, Dorsal view of anterior end; H, Lateral view of a few abdominal segments showing the pockets; J, Dorsal thoracic seta; K, Ventral hook from the 6th foot; L, Dorsal view of anal segment. Scoloplos (Leodamus) gracilis, sp. nov., M—O. M, Dorsal view of anterior end, with extruded proboscis; N, Lateral view of anterior end, with extruded proboscis; O, Lateral view of anal segment.
Scoloplos (Scoloplos) marsupialis Southern
(Fig. 7, G–L)

*Scoloplos marsupialis*, Southern 1921, p. 632.
*Scoloplos marsupialis*, Gravely 1927, p. 22.
*Scoloplos marsupialis*, Fauvel 1932, p. 165.

Twenty two specimens were collected from all parts of the lake. The largest specimen is 79.0mm long, 2.0mm wide at the 13th foot, 1.25mm wide in the abdomen and possesses 204 setigerous segments. The smallest specimen is 45.0mm long, 1.75mm wide at the thorax, 1.0mm wide at the abdomen and possesses 135 setigerous segments.

The body is flattened anteriorly (Fig. 7, G). The conical prostomium is composed of two rings. The thorax consists of 18–20 biannulate setigerous segments. Thoracic segments possess only tapering, chambered setae (Fig. 7, J) in the dorsal bundles, and similar setae together with stout striated hooks with hooded tips (Fig. 7, K) in the ventral bundles. Gills commence on the 13th-16th feet as small papillae, become lingulate and ciliated in the succeeding feet, and are present till almost the very end of the worm. Thin, membraneous pockets are present behind and beneath the ventral cirri of the abdominal region, (Fig. 7, H). These pockets commence on the 18th-37th feet in the present collection. The anal segment bears two long slender cirri (Fig. 7, L).

**Distribution.** Chilka Lake, Krusadi Island, Tuticorin, Ceylon.

Genus *SCOLOPLOS (LEODAMUS)* Kinberg, 1866

*Scoloplos (Leodamus) gracilis*, sp. nov.  
(Fig. 7, M–O ; Fig. 8, A–F)

Two complete specimens were collected from the centre of the lake. One is 49.0mm long, .75mm wide at the thorax, .5mm wide at the abdomen and possesses 168 setigerous segments. The other, more contracted specimen is about 46mm long, .9mm wide at the thorax, .6mm wide at the abdomen and possesses about 227 setigerous segments.

The body is flattened anteriorly (Fig. 7, M & N). The somewhat conical prostomium is composed of two rings. There are 14 uniannulate thoracic setigerous segments in one specimen and 15 in the other. The thorax and abdomen are not sharply demarcated. Gills commence on the 6th foot in both specimens. Thoracic feet (Fig. 8, C) possess a row of chambered setae (Fig. 8, A) in the notopodial bundle. In the neuropodial lobe there is a stout dorsal aciculum, 3 or 4 antero-dorsal acicular setae with flap-like sheaths (Fig. 8, C & D), a bundle of dorsal chambered setae and, ventrally, striated hooks (uncini) with somewhat conical hooded tips (Fig. 8, E). The tips of the acicular setae appear split longitudinally owing to the presence of the sheaths. The dorsal cirri of the anterior thoracic segments are short, but they are longer posteriorly. By about the 15th foot the neuropodial ramus projects as a distinct lobe and the ventral cirrus is quite distinct. In the abdominal segments
TEXT-FIGURE 8.—Scoloplos (Leodamus) gracilis, sp. nov., A—F. A, Thoracic notopodial seta; B, Thoracic neuropodial seta; C, Anterior view of 5th left foot; D, Dorsal part of thoracic neuropodial ramus, showing aciculum and acicular setae; E, Neuropodial thoracic hook; F, Anterior view of a posterior abdominal foot. Laonice brevicrisitata, sp. nov., G—O. G, Dorsal view of anterior end; H, Dorsal view of 60th—64th feet; J, Anterior view of first left foot; K, Anterior view of 25th left foot; L, Anterior view of 45th left foot; M, Ventral hook from the 45th foot; N, Stout, ventral seta from a posterior foot; O, Dorso-lateral view of posterior end.
(Fig. 8, F) the neuropodial rami are dorsal and the dorsal cirri and gills are of equal length. Each neuropodial ramus possesses a colourless aciculum which projects to the outside and striated setae with little or no camerations (Fig. 8, B). The anal segment bears four short cirri around the postero-dorsally situated anal aperture (Fig. 7, O).

In S. (L.) tribulosus (Ehlers), which bears the closest resemblance to the present form, the transition from the thorax to abdomen takes place on segments 24 to 28.


Family **SPIONIDAE** Grube, 1850

Genus **LAONICE** Malmgren, 1867

**Laonice brevicristata**, sp. nov. (Fig. 8, G—O)

Five specimens with their posterior ends missing and a posterior fragment were collected from the centre of the lake. The largest anterior fragment is 47.0mm long, 2.0mm wide and possesses 118 setigerous segments.

The prostomium is somewhat rounded anteriorly and possesses a pair of eyes and a pair of long, grooved palps (Fig. 8, G). It is devoid of a median occipital tentacle and frontal peaks. The median dorsal crest does not extend beyond the 7th or 8th foot. Gills commence on the 2nd foot and cease on the 40th-45th feet. They are long, cirriform, ciliated and completely separated from the dorsal lamellae (Fig. 8, K).

The first foot (Fig. 8, J) has only simple capillaries in both dorsal and ventral bundles. The dorsal lamella is foliaceous, with a pointed tip, and the ventral lamella is large and rounded. The next twenty feet or so are similar to the first in regard to the setae, but differ from it in possessing gills. The first foot has two small, triangular lobes, one in front of the dorsal and the other in front of the ventral setigerous bundle. These lobes are longer in the branchial region, but become shorter and disappear in the post branchial segments.

From about the 20th-30th feet backwards membranous pockets are present between the feet. Each pocket is situated horizontally between the dorsal and ventral lamellae. The pockets are rounded in the anterior segments but stretch between the feet in the posterior segments (Fig. 8, H). When the worm is contracted these pockets are seen as rounded outward bulges.

From the 13th or 14th foot backwards, till the end of the worm, there is in each foot a somewhat stout, tapering, pointed seta which is covered with very fine tubercles (Fig. 8, N), below the ventral bundle of setae. In the middle and posterior feet this seta is directed ventro-medially. From the 40th-45th feet posteriorly (Fig. 8, L), the ventral setigerous lobe
of each foot has a row of simple, bidentate, hooded hooks (Fig. 8, M), between the dorsal bundle of capillary setae and the ventral tuberculated seta. The dorsal lamellae cease to be foliaceous and become shorter and semicircular in the post-branchial region. By about the 60th foot the dorsal lamella is an insignificant forwardly directed curvature of the dorsal parapodial lobe (Fig. 8, H). The ventral lamella becomes reduced to a small, transparent, semilunar flap from the region of commencement of the hooks, the hooks traversing the lamella and emerging from its outer border in a row. The ventral lamella is absent in the posterior segments. The anal segment bears about 9 short, slender cirri round the posterior anal aperture (Fig. 8, O).

This species differs from *L. cirrata* (Sars) chiefly in lacking a median occipital tentacle and in the length of the dorsal crest.


Family **OPHELIIDAE** Malmgren, 1867

Genus **AMMOTRYPANE** Rathke, 1843

**Ammotrypane grandis**, sp. nov. (Fig. 9, A–C)

Nine specimens were collected, all of them from the muddy centre of the lake. The largest specimen is 34.5mm long, 1.5mm wide and 2.0mm high. This and three other specimens above 31.0mm in length possess 66 pairs of parapodia. Three specimens between 24mm and 31mm in length possess 65 pairs of parapodia. One specimen, 18.0mm long, 1.2mm broad and 1.5mm high possesses 64 pairs of parapodia and the other, 21.5mm long, 1.25mm broad and 2.0mm high possesses 62 pairs of parapodia.

The prostomium is triangular in cross-section, tapers anteriorly, and ends in a clavate tip (Fig. 9, A & B). Prostomial and lateral eyes are absent. The protrusible nuchal organs are lobed and usually with reddish-brown pigment patches. The everted proboscis is somewhat funnel-shaped and, at its base, anteriorly, there are 7 short oral cirri.

The body possesses a maximum number of 66 pairs of parapodia, the range in the specimens of the present collection being 62-66. The body is rounded dorsally, its height slightly exceeding its width. A deep, ventral longitudinal groove is present throughout the body, and a ventro-lateral ridge on either side of it. The two ventro-lateral ridges curve round the mouth anteriorly and form the ventral angles of the prostomium, and posteriorly they end at the base of the caudal funnel.

Each parapodium is a short, conical, outwardly directed lobe, with bundle of simple capillary setae above and below it. The dorsal setae of the first two feet and a few of the third foot are curved forwards and are very much longer than those of the succeeding feet. Simple, long, cirriform gills commence on the second foot and are present till the last seg-
ment at the base of the caudal funnel. In most of the specimens a small reddish-brown pigment spot is present on each gill, usually at its base. These are mere pigment spots and not eyes. From the inter-parapodial positions 16-17 backwards there are blackish or creamish slit-like apertures on the dorsal aspect of the lateral ridges (Fig. 9, A).

The anal funnel is spoon-shaped and its rim bears several short, slender papillae, the posterior ones being shorter (Fig. 9, C). The ventro-lateral ridges end at the base of the caudal funnel and parapodia with gills are present till this region. Two, very slender, short, ventrally directed cirri and a anal cirrus are present at the caudal end of the ventral ridges. The anal cirrus is missing in some specimens, very short in a few and long in the others. The ventral flexure of the caudal funnel commences in the region of the 3rd or 4th foot the posterior end.

*A. multipapilla* Annenkova, *A. cylindricaudatus* Hansen and *A. breviata* Ehlers possess a cylindrical caudal tube which is absent in *A. aulogaster* Rathke, *A. gracilis* McIntosh and the present species. In both *A. aulogaster* and *A. gracilis* gills are absent in the last few segments and the pygidium is spoon-shaped, but the presence of two filaments on a pedicle at the base of the proboscis in the former distinguishes it from the latter which has 3 filaments. In the present species gills are present up to the base of the caudal funnel and the two posterior cirri are very slender and ventrally directed. In *A. aulogaster* the two posterior cirri are stout and directed outwards.


**Family CAPITELLIDAE** Grube, 1862

**Genus HETEROMASTIDES** Augener, 1914

Thorax with 11-13 segments possessing only capillary setae in both notopodial and neuropodial bundles. Eye spots often present at the base of the prostomium. Abdomen with hooks on raised tori. A broad anal plate present, with or without hooks, and with two anal cirri.

**Heteromastides platyproctus**, sp. nov.
(Fig. 9, D–F)

One complete specimen, much coiled anteriorly, was collected from the centre of the lake. It is about 35mm long, 1.0mm wide at the thorax, 75mm wide at the abdomen and possesses 70 setigerous segments anterior to the anal plate.

The prostomium is bluntly fingerlike and possesses a cluster of numerous small eye spots on each side, at its base (Fig. 9, D). The achaetous peristomium is somewhat tapering anteriorly and is slightly longer than the succeeding setigerous segment. The thorax is composed of 11 rounded, faintly biannulate setigerous segments with capillary setae in both rami. The abdomen commences from the 12th setigerous segment and possesses only hooks
in both dorsal and ventral rami. Each abdominal hook possesses a waist and a hooded tip with four small teeth above the main fang (Fig. 9, E). The abdominal segments are cylindrical and the tori are shorter towards the posterior end of the body. The oval, slanting anal plate (Fig. 9, F) is composed of about 10 posterior setigerous segments. The dorsal uncinigerous tori are present in the anterior segments of the anal plate, the more anterior ones possessing more hooks. The anus is postero-dorsal and immediately behind it is a pair of short, straight cirri which arise independently.

Only one species of *Heteromastides* with this peculiar anal plate was known in the past, namely, *H. bifidus* Augener. It differs from the present species in regard to the anal plate which lacks uncinigerous tori and possesses two long diverging anal cirri arising from a common pedicle.


**Genus NOTOMASTUS** Sars, 1851

Thorax composed of ten or eleven setigerous segments with only capillary setae in both dorsal and ventral bundles. Abdominal segments with hooded hooks borne on raised tori. Gills simple small processes of the abdominal tori, simple filaments or bushy. Thorax wholly or partly tesselated or untesselated.

**Notomastus ceylonicus**, sp. nov.

(Fig. 9, G—H; Fig. 10, A)

Two specimens were collected from the centre of the lake, both incomplete behind. One is about 25.0mm long, 1.25mm wide at the thorax and possesses 35 setigerous segments. The other is about 21.0mm long, 1.25mm wide at the thorax and possesses 25 setigerous segments. Both specimens have 11 untesselated thoracic setigerous segments.

The prostomium is conical and the thorax is composed of 12 segments (Fig. 9, G). The first thoracic segment or peristomium is uniannulate and achaetous. It is followed by 11 biannulate setigerous segments with simple capillary setae in both dorsal and ventral bundles. All the thoracic segments are untesselated. The abdomen commences from the 12th setigerous segment and the segments possess only hooks in both dorsal and ventral rami, arranged on raised tori. Each ventral torus lies transversely across the lateral aspect of the segment and its dorsal extremity is produced into a short triangular process or gill. The dorsal tori are small, the pair of each segment being approximated and coalesced in the anterior segments but more distinct posteriorly (Fig. 9, H). The abdominal hooks possess bidentate hooded tips (Fig. 10, A).


The differences between the present species and other species of *Notomastus* are shown in the following key.

1. Gills bushy or single long filaments ........................................ 2
1. Gills short extensions of the feet, or absent .............................. 3
Heteromastus deductus, sp. nov.
(Fig. 9, J–K; Fig. 10, D–C)

One specimen, with the posterior end damaged, was collected from the centre of the lake. Length about 34.0mm; width at the 2nd setigerous segment, which is the widest region, 0.8mm; number of setigerous segments 80.

The prostomium is acutely conical and the everted proboscis consists of two rounded lobes (Fig. 9, J). The peristomium is long and biannulate, the two annuli appearing like two separate segments. The thorax is composed of 10 untesselated setigerous segments, of which the first 4 are faintly biannulate and bear only capillary setae in both rami. The
next 6 are uniannulate and bear long stalked hooks in the dorsal rami and short hooks in the ventral rami. The setae of the first four thoracic setigerous segments are borne on the second annulus of each segment. The stalked thoracic hooks possess a few very fine serrations above the main fang (Fig. 10, B). Abdominal hooks are hooded and with 4 or 5 fine serrations above the main fang (Fig. 9, K). From the 3rd thoracic setigerous segment posteriorly there is a shallow, dorso-lateral groove on each side which makes the thorax somewhat triangular in cross-section. The abdomen commences after the 10th foot. It is somewhat narrowed anteriorly but widens from the region of the 15th-21st abdominal segments. By the 27th abdominal segment the body is flattened and there is a longitudinal mid-ventral groove and two lateral ridges (Fig. 10, C). The two dorsal tori of each segment are approximated, coalesced and separated only by a faint groove.

_H. similis_ Southern differs from the present form in the following respects. In addition to the peristomium, the thorax possesses five setigerous segments with only capillary setae in both rami and six segments with long crochets in both rami. The abdominal hooks possess a nodular swelling in the middle of the shaft and two indistinct spines above the main fang. The dorsal abdominal tori, as figured by Southern (1921) are distinct. _H. filiformis_ (Claparède) also possesses 5 anterior thoracic segments with capillary setae in both rami followed by six thoracic segments with long crochets in both rami. Fauvel (1932) considers it to be very little different from _H. similis_ and that it may be synonymous with it. _Parheteromastus tenuis_ Monro is similar to the present species in possessing 4 anterior thoracic setigerous segments with only capillary setae in both rami and appears to be closely related to it. The abdomen commences after the 11th setigerous segment, unlike in the present species.


**Family MALDANIDAE** Malmgren, 1867

**Genus AXIOTHELLA** Verril, 1900

_Axiothella tambalagamensis_, sp. nov.  
(Fig. 10, D—K)

One complete specimen was collected from a somewhat sandy area at Nachchikuda. Length 33.0mm; width 1.5mm at the 9th setigerous segment, which is the widest region. Total number of setigerous segments 18.

The ventral side of the prostomium and the anterior ventral part of the cephalic rim, on either side, bear numerous reddish eye spots (Fig. 10, D & E). The buccal segment is about twice as long as the succeeding setigerous segment. The ventral lip of the mouth is swollen, crescentic and pad-like. The cephalic plate has a longitudinal keel ending at the base of the prostomium and a long nuchal organ on each side of it (Fig. 10, F). The cephalic rim is a single smooth membrane continuous round the posterior end of the cephalic plate.
Text-Figure 10.—Notomastus ceylonicus, sp. nov., A, Abdominal hook. Heteromastus deductus, sp. nov., B—C. B, Long, stalked thoracic hook; C, 27th—34th abdominal segments. Axiothelula tambalagomentis, sp. nov., D—K. D, Ventral view of prostomium, buccal segment and 1st—10th setigerous segments; E, Ventral view of prostomium, buccal segment and first setigerous segment; F, Dorsal view of cephalic plate; G, Ventral view of 10th—18th setigerous segments and the anal funnel; H, Postero-dorsal view of the anal funnel; J, Notopodial seta from the first foot; K, Hook from the 8th foot.
The buccal segment is followed by 18 setigerous segments. The first four show small annulations, especially in their posterior two-thirds (Fig. 10, D). In the fifth and succeeding segments annulations are less clear. Setigerous segments 2-4 are longer than, and 5-7 about twice as long as, the first. The 8th setigerous segment is very short, about the same length as the first, and the succeeding ones are about twice as long as the first. From the 9th setiger posteriorly the dorsal body wall is thin and this region constitutes the “intestine”. The intestinal tube is faintly looped dorsally and is narrower than the ventral side of the body. It merges posteriorly with the 14th setiger which is nearly of the same diameter. From the anterior region of the 9th setigerous segment the ventral body wall possesses transverse markings as in the Opheliidae. A ventro-median groove and two ridges are present up to the end of the 13th setigerous segment (Fig. 10, D & G), after which the segments are cylindrical.

The setae of the first 7 segments are situated in the anterior third of the segments. In the 8th setiger, the setae are in the middle of the segment, and in the succeeding segments they are at the end of the segments. All the dorsal bundles possess only simple bladed setae (Fig. 10, J). Pinnate setae are absent. From the 12th setiger posteriorly the dorsal setae arise from short, conical, setigerous lobes. The ventral bundles possess only hooks in all the setigerous segments, including the first. Each hook has a nodule in the middle of its shaft and 5 stout teeth (Fig. 10, K). From the 8th setiger backwards the hooks are borne on raised tori which are very conspicuous on the 13th-18th setigers.

The 18th setigerous segment is followed by the anal funnel, being separated from it by a very short constriction. Achaetous preanals are absent. The anal funnel (Fig. 10, H) bears about 13 inwardly curved papillae with slightly swollen tips, which alternate with shorter papillae, and a stumpy, broader, inwardly curved caudal cirrus. The anus is a small circular aperture in the centre of a transverse membrane within the funnel.

Glands are diffuse throughout the body, but they are more numerous on the 4th-8th and 14th-18th setigers, the raised uncinigerous tori and the caudal funnel. The ventral nerve cord is seen clearly from the buccal segment to the base of the anal cirrus.

_Axiothella obockensis_ Gravier and _A. australis_ Augener have been reported from the Gulf of Mannar, but both these species possess two long achaetous preanals which are lacking in the present species. In _A. campanulata_ Moore there are two achaetous preanals and in _A. catenata_ (Malmgren) there are four. _A. quadraculata_ Augener sometimes lacks the single achaetous preanal described in Augener’s type specimen but it differs from the present species in the following respects. The body possesses 20 setigerous segments, the segments being cylindrical and the parapodial lobes indistinguishable. The pygidial funnel has 10-12 comparatively large scallops or lobes. Each acicular hook possesses a prominent, rounded nodule in the middle of its shaft and five denticles above a main fang.


Family **TEREBELLIDAE** Malmgren, 1867

Genus **LOIMIA** Malmgren, 1866
ANNELIDA POLYCHAETA OF TAMBALAGAM LAKE, CEYLON

**Loimia decorata**, sp. nov.

(Fig. 11. A—D)

Four specimens were collected from the centre of the lake. Only one specimen is complete. Length 64.0mm (excluding tentacles); width of thorax 2.5mm; width of abdomen 2.0mm; total number of 86 setigerous segments. Tube membraneous, coated with sand.

The prostomium is horse-shoe shaped ventrally (Fig. 11, A). Between the prostomium and the first segment there is a broad ventral membrane. The tentacles are long and grooved. Eyes are absent. There are three pairs of gills, the anterior pair being the longest and the other two being subequal. The anterior gill reaches the 9th foot in one specimen, but is considerably shorter in the others. The first gill arises in line with the first segment, and the last gill arises in line with the second setigerous segment or slightly posterior to it. A single, broad, membraneous lobe is present on each side of the first segment. This is followed by 17 setigerous segments, with dorsal capillary setae and ventral uncini, which constitute the thorax. The thorax may be swollen in one or more places, depending on its state of contraction and the gut contents.

Ten ventral glandular scutes are present, behind which there is a narrow, darker, tesselated or smooth ridge which ceases by about the 13th setigerous segment. The first few scutes are faintly tesselated. The first scute is wider and longer than the next six which are approximately equal to one another in length but decrease in width posteriorly. The 8th scute is almost square, being twice as long as, and approximately as broad as, the 7th. The 9th scute is the longest, being pyriform in outline, with the broader end in front. The 10th scute is smaller than the 9th, cordate in outline, and is situated between the 9th and 10th pairs of setigerous bundles.

The dorsal thoracic setigerous fascicles possess only narrow, winged setae (Fig. 11, B). Uncinigerous tori commence on the 2nd setigerous segment. The uncini are arranged in a single row from the 1st-6th uncinigerous tori (2nd-7th setigerous segments) and in two rows from the 7th-16th tori (8th-17th setigerous segments). The uncini are pectinate and 5-dentate, the lowest tooth being the largest (Fig. 11, C). The spur beneath the lowest tooth is very faintly developed. All the thoracic and abdominal uncini possess 5 teeth and are similar in shape.

The abdomen commences from the 18th setigerous segment. The anterior abdominal segments are usually narrower than the posterior thoracic segments. The abdomen is widest in the region of the 50th-56th feet. Behind the 64th setigerous segment, in the complete specimen, there is a sharp constriction behind which is a rectal tube of about 22 setigerous segments (Fig. 11, D). The last 9 or 10 segments possess a wide lumen and a thin body wall. Each abdominal segment possesses only a ventral pair of uncinigerous tori. The abdominal uncini are similar to the thoracic uncini in regard to the number of teeth and shape. The posterior abdominal uncini are about half the size of the anterior ones.
TEXT-Figure 11.—Loimia decora, sp. nov., A—D. A, Ventral view of the thorax and a few abdominal segments; B, Notopodial seta from the first foot; C, Uncinus from the 3rd thoracic neuropodial torus; D, Ventral view of 63rd and 64th feet and the rectal tube. Potamilla brevilhoracica, sp. nov., E—L. E, Dorsal view of anterior end (gill pinnules not shown); F, Ventral view of anterior end (gill pinnules not shown); G, Notopodial seta from the first thoracic setigerous segment; H, Paddle-shaped seta from the 2nd thoracic notopodial bundle; J, Thoracic hook (uncinus); K, Pennoned (pickaxe shaped) seta from a thoracic neuropodial torus; L, Dorsal view of anal segment.
All four specimens are similar in regard to the anterior lateral lobes, gills, number of thoracic segments, number and arrangement of scutes, the setae and uncini.

In *Loimia medusa* (Savigny) the three pairs of gills all lie anterior to the first setigerous segment and the uncini are 6-dentate only or mixed with 5-dentate uncini. Six-dentate uncini are also present in *L. montagui* (Grube). In *L. arborea* Moore the thoracic uncini possess 5 teeth and a rudimentary 6th. The 6th tooth is well defined in the abdomen. In the present species the origin of the gills, the relative size and shape of the ventral scutes, and the form of the uncini and number of teeth are different.


**Family SABELLIDAE** Malmgren, 1867

**Genus POTAMILLA** Malmgren, 1866

**Potamilla brevithoracica**, sp. nov.

(Fig. 11, E—L)

One complete specimen and two specimens with their posterior ends missing were collected from a somewhat sandy area at Nachchikuda. The complete specimen is 12.5mm long (excluding the tentacles), 1.25mm wide at the thorax and possesses 61 setigerous segments.

The gills are arranged in a semicircle on each side (Fig. 11, E & F). The complete specimen has 10 gills on the left and 11 on the right. Gills possess about 9 transverse, maroon bands and a longitudinal band at the base of each gill. Each gill ends in a long, bare, terminal filament. Branchial eyes are absent. The two palps are tapering and grooved. Each half of the collar ends ventrally in a triangular lobe. The thorax is composed of 5 setigerous segments. The first thoracic setiger possesses only dorsal setae. From the 2nd-5th setigers there are ventral uncinigerous tori in addition to the dorsal setigerous fascicles. From the 6th setigerous segment posteriorly the uncinigerous tori are dorsal to the setigerous fascicles.

There are six large, rectangular, ventral scutes anteriorly, behind which each segment possesses a pair of somewhat square scutes, with the faecal groove running between them (Fig. 11, F). The first scute is the largest, being twice as long as the next five which are approximately equal to one another in length and width. The posterior half of the first scute and the 2nd-5th scutes correspond to the five thoracic setigerous segments. The 6th scute corresponds to the first abdominal segment. From the second abdominal segment backwards there is a pair of scutes to each segment with the faecal groove running between them. Since the first abdominal scute is situated across the mid-ventral region, the faecal groove takes an oblique turn to the right behind it, the scutes adjoining this diversion being modified accordingly.
The setae of the first thoracic segment are arranged in a tuft. Each seta has a striated, tapering blade which is usually constricted at a short distance from its tip (Fig. 11, G). The remaining dorsal thoracic fascicles possess setae of two kinds. The dorsal setae of each bundle are similar to those of the first setiger, but the ventral setae are paddle-shaped and possess tapering tips (Fig. 11, H). The thoracic unciferous tori possess uncini and pennoned setae. Each uncinus possesses a wide, striated, flattened body, a tapering basal process and several small teeth over a main fang (Fig. 11, J). The pennoned setae are different from the usual type met with in other known species of the genus Potamilla. Each pennoned seta has a short, somewhat hooked tip with two striated fins on opposite sides of the latter, but without a long, attenuated tip (Fig. 11, K). Abdominal setae are paddle-shaped as in the 2nd-5th thoracic setigers, but their tips are shorter. The abdominal unicinigerous tori bear only uncini, which are similar to those of the thorax.

The anal segment bears several red eye spots, especially on its ventro-lateral aspects (Fig. 11, L). The tube is horny and coated with sand particles and small fragments of shells and algae.

*Potamilla reniformis* Leukart and *P. ehlersi* Gravier possess branchial eyes which are lacking in the present form. *P. neglecta* Sars, *P. leptochaeta* Southern, *P. casamancensis* Fauvel, *P. ceylonica* Augener, *P. minuta* (Treadwell) and *P. elongata* (Treadwell) are devoid of branchial eyes as in the present form, but their pennoned (pickaxe-shaped) setae are different from those of the present form. In *P. minuta* there are four thoracic setigerous segments and the gills possess a frilled, foliaceous membrane at their bases. *P. elongata* possesses very long-handled uncini and very long gill tips free of pinnules. In *P. casamancensis* there is only a very slight ventral break in the anterior border of the collar. *P. ceylonica* possesses 15–23 thoracic setigers (45–46 according to Augener) and lacks anal eyes. In *P. leptochaeta* anal eyes are absent and the thoracic and abdominal capillary setae possess very long filiform tips. *P. neglecta* possesses usually 8 (5–8) thoracic setigers and anal eye spots but, as stated earlier, its pennoned setae are different from those of the present form.


Family **SERPULIDAE** Savigny, 1818

Genus **HYDROIDES** Gunnerus, 1768

**Hydroides tambalagamensis**, sp. nov.

(Fig. 12, A–G)

One specimen, growing on the inside of a dead windowpane oyster shell, was collected from Nachchikuda. Length of operculum with spines 1.25mm; gills 2.0mm; thorax 2.0mm long, 1.25mm wide; abdomen 18.5mm long and 1.0mm wide. In alcohol, the specimen has a reddish-brown pigment patch at the base of each thoracic setigerous fascicle and a lighter band between it and its fellow of the opposite side.
TEXT-Figure 12.—Hydroides tambalogamensis, sp. nov., A—G. A, Lateral view of operculum; B, Top view of operculum; C, Tip of a gill; D, Bayonets-shaped collar seta; E, Thoracic uncini; F, Anterior abdominal seta; G, Tube.
The operculum (Fig. 12, A & B) is funnel-shaped and carries a crown of seven spines. The opercular funnel possesses about 23 radii, each ending in an outwardly curved, pointed marginal tooth. The opercular spines are curved outwards and each bears a pair of outwardly curved lateral spines situated about half-way along its length, an inwardly curved median spine at the level or slightly above the latter, and a blunt basal spine. There are 8 branchiae with the operculum on the left side and 9 with a rudimentary operculum on the right. Each branchia has a double row of pinnules and an inwardly curved, somewhat hard, colourless, pointed tip (Fig. 12, C). The collar is wide and its anterior border is divided into a dorso-lateral and ventro-lateral lobe on each side. The thoracic membrane is wide and overlaps its fellow of the opposite side. It is continued as a broad, ventral back-flap posterior to the last pair of thoracic setigerous fascicles. There are 7 pairs of thoracic setigerous fascicles, including the pair associated with the collar. Collar setae possess a pair of conical processes at the base of the blade (Fig. 12, D). Remaining thoracic segments bear setae with finely serrated blades. Thoracic uncini possess 6 or 7 teeth, the anteriormost tooth being the largest (Fig. 12, E). The abdomen is composed of about 78 setigerous segments. The anterior and mid-abdominal setae are trumpet-shaped (Fig. 12, F). Posterior abdominal segments bear long, capillary setae with finely serrated tips. The tube is quadrilateral in cross-section, with the lower side spreading on the surface of attachment and the two upper angles drawn into blunt longitudinal ridges (Fig. 12, G).

In *Hydroides homoceros* Pixell the opercular radii bear a pair of subterminal lateral processes and a crescentic terminal process. The opercular spines are inwardly curved and each bears only a pair of lateral processes and a basal spine. *H. crucigera* Morch possesses a crown of inwardly curved spines, each with only a pair of lateral accessory spines. In *H. parvus* Treadwell the opercular spines possess knuckle-shaped, inwardly curved tips, a pair of lateral accessory spines and a basal spine. *H. mucronata* Rioja possesses 7-9 straight, blunt opercular spines, each with only a pair of lateral accessory processes.

In *Hydroides homoceros* Pixell the opercular radii bear a pair of subterminal lateral processes and a crescentic terminal process. The opercular spines are inwardly curved and each bears only a pair of lateral processes and a basal spine. *H. crucigera* Morch possesses a crown of inwardly curved spines, each with only a pair of lateral accessory spines. In *H. parvus* Treadwell the opercular spines possess knuckle-shaped, inwardly curved tips, a pair of lateral accessory spines and a basal spine. *H. mucronata* Rioja possesses 7-9 straight, blunt opercular spines, each with only a pair of lateral accessory processes.

**REFERENCES**


*Claparede, E. 1864—Glanures Zootomiques parmi les Annélides de Port-vendres (Pyrénées Orientales). Genève.*


(M. S. received 17-4-60)