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Abstract: A two dimensional stochastic dielectric breakdown 
model was utilized to study the fractal properties of simulated 
lightning discharges and surface discharges. The fractal 
dimension of the simulated growth patterns varied depending 
on the cell configuration chosen for the breakdown. The 
inclusion of the cells in the diagonals with reference to the 
growth site produced less branched trees with smaller fractal 
dimensions. The production of branches in the electrical tree 
growth depends highly on '//', which is the exponent of the 
breakdown probability distribution. For small n values, highly 
complex tree patterns with many branches were observed. 
By controlling the value of n, growth patterns similar to the 
experimental observations could be produced. The average 
fractal dimension estimated through the Correlation Function 
method when n=\ for simulated lightning discharges and 
surface discharges were 1.56±0.GT and 1.68±0.0T respectively. 
When n>4 the growth patterns effectively lose their fractal 
structure and became a curve with dimension 1. 

Keywords: Electrical treeing, lightning, simulation, surface 
discharges 

INTRODUCTION 

Stochastic models for dielectric breakdown processes 
provide a possible theoretical foundation to describe 
the tortuous structure of lightning discharges in the 
atmosphere as well as the development of surface 
discharges on insulating materials. In 1984, a simple 
two dimensional stochastic model was produced to 
support the experimental observations of branching 
gas discharges'. The model was developed as a growth 
pattern, which finds the new growth sites according to 
the potential in the nearest neighbours by solving the 
discrete Laplace equation. The basic assumption is that 
the growth probability of conducting structures depends 
on the local electric field. They showed that their model 
naturally leads to fractal structures with dimension 
1.75 ± 0.02 for simulated discharge patterns. Others 

used a modified two dimensional stochastic model 2 which 
was originally developed by Niemeyer et al. to study the 
fractal properties in the dielectric breakdown process 
in damaged structures. They used several methods to 
estimate fractal dimension of simulated structures on 
solid dielectrics and found close similarities between 
the experimental and simulated results. Various fractal 
dimension estimation methods produced a. dimension 
close to «1.66. 

Previous studies 3 analyzed a set of lightning 
photographs and concluded that the average fractal 
dimension of lightning discharges is 1.34 ± 0.05, and built 
a simple dielectric breakdown model in two dimensions 
to explain the quantitative fractal behaviour observed 
in lightning photographic images. The two dimension 
stochastic model has been extended to simulate lightning 
discharges in three dimensions and calculated the 
average fractal dimension in 3D as well as the average 
fractal dimension in the 2D projections 4. They reported 
a value »1.51 as the fractal dimension for simulated 3D 
lightning patterns and «1.34 for the vertical projection 
of the same. Their observations agree with previously 
published results only at higher value of the exponent n 
in the breakdown probability distribution. 

In a recent study, another group presented an 
improved leader progression model to simulate lightning 
channels 5. They calculated the path of lightning channels 
and their progression under the condition of finite-charge 
distribution inthe thundercloud and developed numerical 
simulation by computing the charge distribution in a 
square lattice. They also defined the charge distribution 
using the Poisson's equation, and for each time step, 
finite-difference method was applied to solve the 
Poisson's equation numerically. Their estimation on 
fractal dimension varied in the range from 1.1 to 1.4. 
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M E T H O D S A N D MATERIALS 

Dielectric Breakdown model: The simulation was 
developed to generate growth patterns of lightning 
discharges and surface discharges in two dimensions. The 
in itial charge configurations for both processes are shown 
in Figure 1. These two configurations act as the initial 
boundary conditions for the subsequent development of 

F i g u r e I: I n i t i a l c h a r g e c o n f i g u r a t i o n ; b l a c k : (f) = \ g r e y : <p=fi 
( a ) L i g h t n i n g d i s c h a r g e ( b ) S u r f a c e d i s c h a r g e 
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the growth patterns. The black dots represent the cells 
having positive potential (^ = 1) and the grey dots represent 
the cells having negative potential (<^=0). 

Both, lightning and surface discharge configurations 
were simulated ona250x250 square lattice. For lightning 
configuration, a negative charge was placed above the 
layer of positive charges at a distance of 250 lattice units. 
In surface discharge configuration, the negative charge 
was placed at the centre of the lattice and a circle of 
positive charges were placed around the centre charge at 
a radial distance of 250 lattice units. 
The model works as follows. The pattern grows stepwise 
from negative potential (^=0) to positive potential (tj) 
= 1). The electric potential in each cell was calculated 
by solving the Laplace equation numerically over the 
2D grid (Equation 1) subjected to the initial boundary 
conditions (Figure 1). 

^ + ^ = 0 ( i ) 
dx2 tV 

In the finite-difference approach, for a square grid, central 
difference approximation of the second derivative 
yields, 

</>(x,y) = ^{ij>(x + h,y) + <j>(x-h,y) + </>(x,y + h) + 0(x,y-h)\ . . . (2) 

where (x , y) is an arbitrary cell coordinate and h is 
the distance between adjacent lattice points. Thus, by 
using potential of the nearest neighbours in x-direction 
and ^-direction, potential at an arbitrary cell (x, y) can 
be calculated; i.e. the potential at any grid point is the 
mean potential of its nearest neighbours. To increase the 
speed of convergence, the system of equations generated 
through Equation 2 was solved by using successive over-
relaxation method 8 as shown in Equation 3. 

<pn+l(x,y) = 0n(x,y) + (A + \)An(x,y) (3) 

where 

A w (x, y) = ^ {(f>n (x + h, y) + <j)n (x - h, y) + <pn (x, y + h) + 

<t>;i{x,y-h)}-<f>n(x,y) 

Here, the index n and n+\ refer to the previous and 
current iteration cycles of the system respectively. The 
over-relaxation parameter X, has the effect of amplifying 
each step towards the final answer when l>0. In this 
work, a value of 0.5 was used for a . When the residuals 
of all nodes were below a predefined tolerance, the 

Most theoretical models that deal with the propagation of 
lightning generated electromagnetic fields do not take the 
fractal nature of lightning into account. A recent study 6 , 
which has investigated the tortuosity and the branching 
of lightning channels, has shown that the fractal nature of 
lightning can significantly modify the radiated waveforms 
and increase the high frequency content. Incorporating 
methods that could simulate fractal characteristics similar 
to the experimental measurements make the lightning 
propagation models more realistic. 

Dielectric materials are often used as passive 
components in electrical appliances. The condition of the 
dielectric material determines the reliability and lifetime 
of electrical systems. It has been reported that the fractal 
dimension of electrical breakdowns decreases with the 
decrease in the dielectric constant of the insulator7. 
Therefore, it is important to investigate the influence of 
the local electric field which is a proxy for the dielectric 
constant on the fractal development. 

The main objective of this work was to study the 
influence of initial cell configuration on the fractal 
geometry of simulated lightning discharges and surface 
discharges, and estimate the value of n in the breakdown 
probability distribution that produces fractal structures 
similar to the experimental observations. The work 
presented here is based on the Laplacian growth model 
which is similar to the original model developed in 
previous studies'. Several fractal dimension estimation 
algorithms were used in interpreting the simulated growth 
patterns, and the results were compared with the published 
values for natural dielectric breakdown processes. 
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iterative process was terminated which was found to be 
approximately the size of the lattice. 

Step by step, the algorithm searches the possible 
lattice points which can be attached to the growing 
pattern. At each step, the Laplace equation was solved 
numerically and one lattice point was added to the pattern 
as a new bond with zero potential. Each time a new point 
i s added, it alters the potential of the unoccupied cells in 
the vicinity. The new point i s chosen from all possible 
adjacent cells subjected to the probability distribution P. 
given in equation 4. 

Pi = -
n „ 

I. An 

where the index i refers to the l is t of adjacent cells and n 
i s the total number of cells. Basically, P. acts as a weight 
function to choose cells according to their potential. 
After each step, the potential of all unoccupied cells 
was recalculated to introduce the effect due to the newly 
added cell. T h i s process was repeated until the pattern 
reached the positive potential (cell boundary). The effect 
of the exponent r\ on the growth patterns are discussed 
later. 

r cc 
n(r) 

(5) 

The second method i s a variant of the Box Counting 
method called' Sandbox' method2. In the Sandbox method 
a square box of size ' L ' i s formed on the pattern and the 
mass of the tree found within the box i s evaluated. The 
mass can be evaluated by counting the number of lattice 
points within the box. Average mass M(L) i s obtained 
for different box sizes 'L\ Fractal dimension D2 i s the 
exponent that expresses the scaling of the mass with its 
size. 

(4) M(L)ocLD (6) 

The third method, called Correlation Function method, 
gives a statistical value for fractal dimension based on 
pair-wise distance between points. Basically, Correlation 
dimension can be calculated between each pair of points 
in a set of ' /V number of points. In this method, mass i s 
equal to the average of the number of pairs where pair 
distance i s less than the denned length V . The mass can 
be calculated using correlation integral10, 

(7) 

I t should be noted that the discharge development 
process discussed here, represents the movement of the 
stepped leaders for lightning discharges and streamers for 
surface discharges. I f one wishes to develop the growth 
model further, for example to introduce dart leaders to 
follow the same general path created by the stepped 
leaders in the lightning configuration, or, distortions 
of the electric field due to space charges distributed 
along the streamer channels in the surface discharge 
configuration, then after completing the initial growth 
cycle, the Laplace equation must be replaced with a 
Poisson equation for the subsequent growth cycles. 
Since the f irst growth cycle deposits charges along the 
leader channels or the streamer channels, subsequent 
growth cycles w i l l be automatically attracted to the old 
path, thereby reducing the fractal nature. 

Estimation of fractal dimension: Three fractal dimension 
estimating methods were used to evaluate the dimension 
of individual growth patterns. The first method i s the 
popular Box Counting method9. In this method, the 
number of boxes 'n(rf inside which, at least one sample 
point lies were counted for different box sizes ( r ) . 
The Box Counting dimension Dl i s calculated using 
equation 5. 

where (X.-X^ i s the pair-wise distance and 0 i s given by, 

®(r-\Xl-X,\) = \ ' 
1 j U [0 0 > ( r - 1 

The Correlation dimension D3 can be calculated 
mathematically by using, 

C(r)ocrm (8) 

Generally, in all three methods, fractal dimension can be 
found by calculating the gradient of a double log (log-log) 
plot through the least-square fitting procedure. 

Table 1: Comparison of results obtained for estimated fractal 
dimension and theoretical values of known shapes 

Box Sandbox Correlation Theoretical 
Counting 

Line 1.02 1.00 1.07 1 
Plane 1.99 1.99 2.00 2 
Sierpinski Gasket 1.58 1.54 1.64 1.58 
Sierpinski Carpet 1.88 1.88 1.96 1.89 
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RESULTS A N D DISCUSSION 

Accuracy of fractal dimension algorithms 

Three fractal dimension estimating techniques were 
utilized to extract the fractal dimension of the simulated 
discharge patterns. The implemented algorithms were 
tested by applying on well known shapes before extracting 
the fractal dimension of simulated discharge patterns. 
Two Euclidean shapes and two fractal shapes, where the 
theoretical fractal dimensions are known, were used as 
known shapes. Figures 2a and 2b show the two fractal 
shapes used in this work, known as Sierpinski Gasket 
and Sierpinski Carpet, respectively. Table 1 shows the 
estimated results for each of the three fractal estimating 
methods against their theoretical values. When the fitting 
errors were examined by minimizing the %2, it was noted 
that the statistical errors in the determination of the 
fractal dimension was in the order of ±0 .001 . According 
to the results shown in Table 1 , all fractal dimension 
estimation methods have produced the fractal dimension 
within ±0.07 of the theoretical values. Although the 
Box Counting algorithm has performed quite well here, 
it should be noted that the algorithm has a number of 
practical limitations in estimating dimensions of complex 
patterns, especially at high embedding dimensions9. 

Figure 2: Fractal shapes used in testing the implemented algorithms 

(a) Sierpinski Gasket I b) Sierpinski Carpet 

Table 2: Estimated means of fractal dimensions for various cell 
configurations together with their errors 

Box Counting Sandbox Correlation 

Lightning 
Configuration 1 1.218 ±0.005 1.593 ±0.005 1.556 ±0.012 
Configuration 2 1.099 ±0.006 1.464 ±0.006 1.499 ±0.010 
Configuration 3 1.128 ±0.006 1.505 ±0.008 1.511 ±0.013 

Surface 
Configuration 1 1.238 ±0.004 1.601 ±0.006 1.684 ±0.009 
Configuration 2 1.155 ±0.006 1.557 ±0.005 1.668 ±0.008 
Configuration 3 1.133 ±0.005 1.524 ±0.007 1.665 ±0.011 
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Effect due to cell configuration 

The speed of electrical tree growth and appearance 
of the branches in the growing pattern depend on the 
selected cell configuration, which defines the possible 
growth sites at each step. There are three possible cell 
configurations that can be selected to simulate lightning 
and surface discharges, namely, cross configuration, 
diagonal configuration and space filling configuration. 
For these three cell configurations, growth patterns 
were simulated by keeping >/=l. Fractal dimension of 
the simulated patterns were evaluated using the Box 
Counting, Sandbox and Correlation Function methods. 
Figures 3a, 3b and 3c show three typical simulated 
growth patterns for lightning discharges. The insets 
show the cell configuration used. Fractal dimension of 
simulated surface discharges were also found by using 
the same three fractal dimension estimating methods. 
Figures 3d, 3e and 3 f show the three typical simulated 
growth patterns for surface discharges with the insets 
showing the cell configurations used. 

In Table 2, estimated mean fractal dimensions and 
their errors for three cell configurations for both lightning 
and surface discharges are shown. For each configuration, 
25 growth patterns were generated randomly to estimate 
the mean and error. The error in the mean was evaluated as 
O/VM where o i s the standard deviation and n i s the number 
of growth patterns. I t can be seen that the selection of 
the diagonal points from the nearest neighbours lead to 
simulated growth patterns with less spatially separated 
branches contributing to a smaller fractal dimension 
(see cross configuration and diagonal configuration). In 
general, the box Counting method yields a significantly 
smaller fractal dimension compared to the Sandbox 
and Correlation Function methods. T h i s i s due to 
the fact that the Box Counting technique emphasized the 
geometrical structure of the fractal pattern ignoring the 
underlying measure. For example, when computing the 
Box Counting dimension, one either counts or does not 
count the boxes depending on whether there are fractal 
points or no fractal points within the boxes. There are 
no provisions for weighting the boxes according to the 
number of fractal points within each box. The variant of 
the Box Counting method called the Sandbox method 
where the underlying fractal points have been weighted, 
produces fractal dimension values comparable to the 
Correlation Function method. 

Variation with n 

Exponent n in Equation 4 controls the appearance of 
branches in the tree patterns. The effect of n can be deduced 
from the fractal dimension of growth patterns. Figures 
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Figure 3: Simulated lightning and surface discharge growth patterns for rj=l with the insets 

showing the cell configurations 

4a, 4b and 4c show the dependency on n for simulated 
lightning discharges for cell configuration 1 for 7=0.5, 
1.0 and 1.5 respectively. When n increases, the 'dense' 
nature of the tree reduces rapidly and less branching 
was observed. Figures 4d, 4e and 4f show the same for 
surface discharge configurations for n=l.O, 2.0 and 4.0 
respectively. In the surface discharge configuration, when 
n increases, the symmetrical development of the pattern 
was completely abandoned and the growth pattern tended 
to produce a branch or two aligned in random orientation 

growing from the centre of the lattice to the boundary, 
i.e., the growth pattern preferred to stay on course with 
the initial direction which was chosen randomly at the set 
off. This implies that, in actual situations with insulators, 
if there are surface defects which favour the initial 
discharge development, the electrical breakdown will 
always occur in the same path if the dielectric constant of 
the insulator is high enough to reduce the fractal growth. 
This behaviour can seriously affect the insulator and 
degrade the performance and increase ageing. 
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Exponent 
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Figure 5: V a r i a t i o n o f f rac ta l d i m e n s i o n w i t h r\ ( a ) L i g h t n i n g d i s c h a r g e s ( b ) S u r f a c e d i s c h a r g e s 

Figure 6 : S i m u l a t e d l i g h t n i n g a n d surface d ischarge pat terns w i t h f rac ta l 

d i m e n s i o n s c o m p a r a b l e to the e x p e r i m e n t a l l y m e a s u r e d 

o b s e r v a t i o n s 

The variation of fractal dimension with the exponent 
n for lightning and surface discharges are shown in 
Figure 5 for the Correlation Function method. When 
7>4, the growth patterns effectively lose their fractal 
structure and become a curve with dimension 1. For 
lightning configuration, when n<l, the growth pattern is 
highly dense, deviating from any experimentally observed 
discharge patterns. It should be noted that when rj=0, 
as expected, the fractal dimension moves towards 2 
which is the dimension of a plane. As shown in the figure, 
the relationship between the fractal dimension and rj 
can be expressed by a 3 r d degree polynomial. Although 
the same growth model was used, the simulated lightning 
patterns lose their fractal structure faster than the 
simulated surface discharges. This is due to the influence 
of the initial charge configuration on development of the 
tree patterns. 

Only few published results are available on fractal 
dimension of natural breakdown trajectories for lightning 
and surface discharges. The available data suggest that 
the fractal dimension for natural lightning and surface 
discharges are in the order of w 1.34 and « 1 . 7 0 respectively. 
Thus, for cell configuration 1, the dielectric breakdown 

model discussed in this study can reproduce discharge 
patterns with a similar fractal structure when n ~ 1.6 and 
rj ~ 0.9 for lightning and surface discharges respectively 
(Figure 6). That is, surface discharges tend to produce 
highly complex, tortuous paths compared to natural 
lightning discharges. The tortuous paths of lightning 
discharges are responsible for enhancing the high 
frequency end of the lightning generated EM spectrum. 
Less tortuous surface discharge channels are responsible 
for the breakdown of solid dielectrics. Thus, the effect of 
tortuosity on the lightning generated EM fields and the 
breakdown of solid dielectrics can be studied using the 
model presented here. When n =1 simulated lightning and 
surface discharges produced fractal dimension values of 
1.56 ±0.01 and 1.68 ±0.01 respectively. 

Execution time and growth 

One of the main problems in the simulation is the 
execution time which increases exponentially with the 
increase in the lattice dimension. In the present study, 
this was avoided by limiting the subsequent iterations to a 
grid of 40x40 lattice points centred on each newly added 
growth site. However, this may lead to patterns growing 
asymmetrically especially when simulating surface 
discharges in large lattice structures. The execution time 
depends not only on the lattice dimension but also on 
the over-relaxation parameter given in Equation 3. 
The possible 'A' lies between 1 and 0 and it controls 
the speed of convergence, lt was found that a value of 
approximately 0.5 seems to work well. 

It was noted that the points added on to the existing 
pattern at later stages favour the development of branches. 
This behaviour was seen both for lightning discharges 
and surface discharges. Thus, a cell already embedded 
in the pattern has a lesser probability of branching at the 
later stages due to screening from the existing cells. 
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In the interpretation of the results presented here 
it must the kept in mind that the stochastic model 
discussed above depends on the 2D Laplace fields to 
determine the electric potential on cells of a 2D lattice 
(without considering the effects due to the dimension 
perpendicular to the plane of the lattice). Past studies 
have shown that 3D Laplace fields tend to produce 
fractal patterns with slightly higher dimensions 
compared to 2D Laplace fields for the development of 
surface discharges11. For lightning discharges, studies 
carried out with the 3D stochastic models have shown 
that, compared to 2D fractal dimension, 2D projections 
of 3D fractal patterns show a 10-13% reduction in fractal 
dimension4. Although the 2D dielectric breakdown 
model discussed in this study can be easily extended to 
3D, the heavy computational time required to develop 
fractal structures in 3D introduces a severe constraint on 
the development of growth patterns even for reasonably 
sized lattice structures such as 250x250. 

C O N C L U S I O N 

A 2D stochastic model based on Laplacian growth was 
used successfully to simulate lightning discharges as well 
as surface discharges. A strong dependency on the fractal 
nature of the growing patterns was seen on the chosen 
cell configurations. The selection of diagonal points 
from the nearest neighbours simulates growth patterns 
of lightning as well as surface discharges with lesser 
branches contributing to a smaller fractal dimension. 

The most popular method to compute fractal 
dimension of a given structure i s the Correlation Function 
method, which estimates dimension based on the pair 
wise distances between points on the pattern. However, 
since the magnitude of the fractal dimension may depend 
on the fractal dimension estimation method, in addition 
to the Correlation Function method, Sandbox method 
and another popular method, Box Counting method, 
both of which can be implemented easily, were used in 
this study. The differences of fractal dimension values 
reported in these methods are related to the emphasis on 
point wise and bulk size dimension. T h u s , one should 
be cautious when comparing fractal dimension estimates 
based on different techniques. 

Fractal dimensions of simulated discharge patterns 
in all cell configurations show strong dependence on 
the exponent n. B y changing the n value, simulated 
discharge patterns, where the fractal dimension i s closer 
to the experimental values, can be developed. That i s , 
the appearance of the branches in the simulated tree 
patterns i s controlled by the exponent. When n increases 
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the 'dense' nature of the trees are reduced rapidly. That 
i s , patterns effectively lose their fractal structure and 
become a curve with dimension 1 when tj>4 . 

I t has been shown that the model can be used to 
generate growth patterns with similar fractal structures 
to natural lightning and surface discharges when n~ 1.6 
and rj ~ 0.9 respectively. Further work i s necessary and 
is in progress to compare the growth patterns generated 
through the dielectric breakdown model with models that 
can generate similar fractal structures using diffusion 
limited aggregation. 
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